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This paper will discuss the design and implementation of an inertial navigation system (INS) using an inertial
measurement unit (IMU) and GPS. The INS is capable of providing continuous estimates of a vehicle’s position
and orientation. Typically IMU’s are very expensive sensors, however this INS will use a “low cost” version
costing only $5,000. Unfortunately with low cost also comes low performance and is the main reason for the
inclusion of GPS into the system. Thus the IMU will use accelerometers and gyros to interpolate between the
1Hz GPS positions. All important equations regarding navigation are presented along with discussion. Results
are presented to show the merit of the work and highlight various aspects of the INS.

I.  Introduction
Navigation has been present for thousands of years in some
form or another. The birds, the bees, and almost everything
else in nature must be able to navigate from one point in
space to another. For people, navigation had originally
included using the sun and stars. Over the years we have
been able to develop better and more accurate sensors to
compensate for our limited range of senses. This paper will
discuss work using one of these advanced sensors, an
inertial measurement unit (IMU). This sensor, coupled with
the proper mathematical background, is capable of
detecting accelerations and angular velocities and then
transforming those into the current position and orientation
of the system. 

Inertial Navigation Systems (INS) have been developed for
a wide range of vehicles. Sukkarieh [1] developed a GPS/
INS system for straddle carriers that load and unload cargo
ships in harbors. When the carriers would move from ship
to ship, they would periodically pass under obstructions
that would obscure the GPS signal. Also, as the carriers got
closer to the quay cranes, it became more difficult to get
accurate positions due to the GPS signal being reflected
about the cranes metal structure. This increases the time of
flight of the GPS signal and results in jumps in the position.
During these times the INS would then take over, and guide
the slow moving carrier until a reliable GPS signal could be
acquired.

Bennamoun et al [2] developed a GPS/INS/SONAR system
for an autonomous submarine. The SONAR added another
measurement to help with accuracy, and provided a
positional reference when the GPS antenna got submerged
and could not receive a signal.

Ohlmeyer et al [3] developed a GPS/INS system for a new
smart munitions, the EX-171. Due to the high speed of the
missile, update rates of 1 second from a GPS only solution
were too slow, and could not provide the accuracy needed.

A.  Outline
The first section of this paper will introduce inertial
navigation. Then the IMU and GPS hardware will be
covered. Finally experimental results using this INS will be
presented.

II.  Inertial Navigation
This section will cover strap-down inertial navigation by
first describing the methods and equations. Next sources of
error for these systems and how the kalman filter will be
utilized to account for these errors.

A.  Overview of Inertial Navigation Systems
A basic flow chart of how inertial navigation works is
shown in Figure 1. However, this is not all that needs to be
done to have an INS that works. There are many problems
with noise and unbounded error that must be handled to get
any meaningful result out of the INS.

Gimballed INS
The first type of INS developed was a gimballed system.
The accelerometers are mounted on a motorized gimballed
platform which was always kept aligned with the
navigation frame. Pickups are located on the outer and
inner gimbals which keep track of the attitude of the
stabilized platform relative to the vehicle on which the INS
is mounted. This setup has several detractors which make it
undesirable.
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2 Inertial Navigation
• Bearings are not frictionless.
• Motors are not perfect (i.e. dead zones, etc.).
• Consumes power to keep the platform aligned with

the navigational frame which is not always good on
an embedded system.

• Cost is high due to the need for high quality motors,
slip rings, bearings and other mechanical parts.
Thus the typical customers for such systems were
military uses on planes, ships, and intercontinental
ballistic missiles.

• Recalibration is difficult, and requires regular main-
tenance by certified personnel which could be diffi-
cult on an autonomous vehicle. Plus any
maintenance that must be performed on the system
(i.e. replace bearings, motors, etc.) must be done in
a clean room and then the system must go through a
lengthy recertification process.

Strap-down INS
A strap-down system is a major hardware simplification of
the old gimballed systems. The accelerometers and gyros
are mounted in body coordinates and are not mechanically
moved. Instead, a software solution is used to keep track of
the orientation of the IMU (and vehicle) and rotate the
measurements from the body frame to the navigational
frame. This method overcomes the problems encountered
with the gimballed system, and most importantly reduces
the size, cost, power consumption, and complexity of the
system.

B.  Reference Frames and Rotations
Inertial navigation uses several reference frames, which are
shown in Figures 2 and 3. To transition between the various
reference frames, several rotation matrices are needed. The
first one takes measurements in the body frame and puts
them into the navigation frame,

FIGURE 1 A flow chart of a strap-down INS which takes acceleration and rotation rates from the IMU and produces
position, velocity, and attitude of the system.

FIGURE 2  The XYZ frame is the inertial frame ECEF
and the NWU frame is the local navigational frame,
where the axes are north (N), west (W), and up (U).

FIGURE 3  Body frame which is aligned with the axes of
the IMU. The center of this frame is located at the origion
of the navigational frame.
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where  is roll,  is pitch, and  is yaw. This rotation is
the sequence 1-2-3, which is typically used in aerospace
applications. This is a type 1 sequence which has
singularities when the pitch is +/- 90 degrees since at this
angle both the roll and yaw have similar effects. Thus for
fighter aircraft which typically encounter this range, other
methods must be included to account for this problem.

The next rotation will transform points from the ECEF
frame to the navigation frame,

(2)

where  is latitude and  is longitude. Now with these two
rotations we can get another rotation, the one we really
need.

(3)

The last thing to remember with the above equation is that
the inverse of any orthogonal rotation matrix is equal to its
transpose. If a rotation matrix is not orthogonal (and this a
problem with using Euler angles in navigation) then the
previous statement is invalid.

C.  Navigation Equations
Looking at Newton’s second law of motion, a change in
motion occurs as a force is applied to a body. Now, dividing
both sides of the equation by the mass of the object results
in the specific force.

(4)

In inertial navigation, accelerometers detect accelerations
due to forces exerted on the body. These forces are typically
referred to as specific forces (S). Thus reading from the
IMU will be referred to as specific forces, which are
independent of the mass. The navigation equations for the
Earth Centered Earth Fixed (ECEF) system are shown
below.

(5)

(6)

where  is the rotation rate of the earth, R is a rotation
matrix between different coordinate systems, P is the
position and V is the velocity vector in the ECEF
coordinate system as denoted by the superscript e. Also the
attitude will be changed from euler’s roll, pitch, and yaw to
quaternions. Quaternions will help prevent the body to
navigation rotation matrix, which transforms points from
body frame to the navigational frame and back, from
becoming non-orthogonal. 

(7)

D.  Sources of Error
This section will provide a quick overview of some
difficulties present in inertial navigation. This will provide
a better understanding for the difficulties encountered with
the IMU.

Bias and Drift
These are the most devastating effectors on accuracy to an
IMU. Drift rate for the gyros and accelerometer bias are
small offsets which the IMU incorrectly reads, that must be
properly accounted for. The bias has a quadratic effect on
the position derived from the IMU.

(8)

Looking at the Table 1 above it becomes apparent that
determining the bias is of critical importance if any accurate
measurement is expected.

The drift rate has a similar, and an equally massive impact
on the position of a system. If a drift is not properly
accounted for, and the IMU thinks it is rotating, then the
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4 Inertial Navigation
navigation equations will not properly account for gravity
and the system will think it is moving due to a maximum
acceleration of 9.8  depending on how far the system
has drifted.

Temperature
The IMU’s accelerometers and gyros are sensitive to
temperature as shown by Nebot and Durran-Whyte [4].
Thus as the temperature of the IMU changes, the associated
bias and drift will change until the temperature reaches
steady state or remains the same. This is not critical in our
application, we just wait for the IMU to reach steady state
before trusting the readings. However if this system was
mounted in an aircraft which changed altitude and
temperatures, this would be a problem.

Hysteresis
The drift rates and accelerometer biases tend to change each
time the unit is switched on. This is due to the fact that
measurements are noisy. Typically there is a low pass filter
used to remove some of this noise before the measurements
are used in the navigation equations (also realistically, there
tends to be low pass filtering somewhere in the system due
to hardware limitation because not everything has infinite
bandwidth). When random noise is filtered, this produces
what is called a random walk. The integration of this
random walk will result in velocity and positions moving at
different rates during different runs even though the IMU
(and vehicle) are in the same orientation and experiencing
the same accelerations during each run.

To give an idea of the performance of a strap-down system,
the following quote is taken from an article [5] written by
A. D. King, Chief Engineer of Navigation and Electro-optic
Systems Division of Marconi Electronic Systems. Marconi
produces INS for virtually all of the RAF’s combat aircraft
as well as many other systems. 

“Many of these instrument errors vary each time
you switch the system on - INS have good days and
bad days. To characterize the performance of an
INS, you have to resort to statistics, and take the
r.m.s. total error from an ensemble of many
representative missions. A typical standard
expected from a ‘good’ INS produces an error that
increases with time (not an entirely linear fashion),

and reaches .6 miles after one hour (referred to as
.6 nautical miles/hour system).”

Vibrations
Vibration in a strap-down system can cause many problems
with the INS. Generally great care must be taken to isolate
the IMU from any resonance frequencies. In high precision
systems, various tests must be done to try to identify what
these frequencies are then design elaborate mounts to hold
the IMU.

E.  Extended Kalman Filter
In addition to the prefiltering of the IMU data, an extended
kalman filter was developed to estimate the biases and
drifts of the system and then update the navigational
solution. The full kalman filter equations will not be
presented here due to limited space, but an overview of the
process is shown in Figure 4 and further information can be
found in Brown and Hwang [6].

The error model was developed based on derivations by
Chatfield [7] and Rogers [8]. This filter model is small
compared to other authors have anywhere between 20 and
50 different states, depending on how their navigational
models were defined. Note that there is also the inclusion of
two sets of terms which now makes this an extended
kalman filter model. The terms are the errors in bias on the
accelerometers, and drift of the gyros. Each is modelled as
a random walk (or could have modelled them as a markov
process), where the terms with the subscript N on the far
right of the equation are zero mean, random white noise
with the appropriate standard deviation. The purpose of this
is to estimate these new parameters, since they are difficult
to determine, and (as in the case of the bias) change greatly
depending on temperature, time, and orientation.

(9)
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FIGURE 4  Overview of the extended kalman filter’s integration with the INS.
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III.  Hardware
This section will provide an overview of the two primary
sensors, the IMU and GPS shown in Figure 5.

A.  Crossbow IMU
The IMU is a solid state vertical gyro (DMU_HDX) from
Crossbow Technologies intended for airborne applications
such as UAV control, Avionics, and Platform Stabilization.
This high reliability, strap-down inertial subsystem
provides attitude measurement with static and dynamic
accuracy comparable to traditional spinning mass vertical
gyros. Data will be transmitted by the DMU digitally via a
serial connection (RS-232). The gyros on the Crossbow
IMU are low cost, low performance MEMS (Mechanical
Electrical Micro-Systems) gyros. These gyros are much
less expensive to produce, but performed at least an order
of magnitude worse than another low cost IMU system
being developed by Dr. Crane here at U.F. That system uses
an IMU developed from Honeywell which has ring laser
gyros. Unfortunately, the gyro performance is a critical
element in accounting for gravity in the system.

Prefiltering IMU Data
The data produced by the IMU is extremely noisy, thus a
filter was designed. Matlab’s signal toolbox was used to
accomplish this task. The toolbox is capable of designing
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FIGURE 5  Sensors used in the INS. (left) The Crossbow DMU-HDX which is a solid state vertical gyro capable of
measuring angular rates and accelerations on all three axes. It also has the capability of measuring the roll and pitch of
the device too. (right) Garmin 16LVS OEM GPS which is both a reciever and antenna.

FIGURE 6  This is a plot of the biases as the IMU was
rotated around the z-axis (yaw). Rotations around the
other axes would also efect the biases, thus this mapping
is ont useful since the values are changing nonlinearly.

FIGURE 7  Comparison of the unfiltered data (top)
produced by the IMU and the filtered data (bottom) using
the Chebyshev II filter. Data is from one of the
accelerometers while the IMU is sitting still on a table.
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all of the classic FIR and IIR filters. A IIR filter was
decided on since it produces the same results as an FIR
filter but with a much lower order. This lower order results
in a less computational process. The following
specifications for the filter were decided on: pass band
value of 2Hz, stop band of 3 Hz, and a stop band attenuation
of -50 dB.

Additionally, the desired filter should not have any ripple in
the pass band range, thus the Equiripple, Elliptic, and
Chebyshev I filters were eliminated as possible designs.
The remaining Butterworth and Cheyshev II filters were
looked at. After much testing with various options, the
Chebyshev II filter was settled one as the best on for the job
and its performance can be seen in Figure 7.

B.  Garmin GPS
The GPS system used in this work is the Garmin 16LVS.
Garmin is a common name in commercial civilian GPS
systems, and this OEM device has performance that is on
par with all other GPS systems available currently (i.e.
accuracy of about 10 m 95% of the time) as shown in Figure
8. However this GPS was specifically bought because it
included a WAAS (Wide Area Augmentation System)
filter which should increase the accuracy to less than 3 m
95% of the time.

WAAS [9] utilizes ground stations which detect and send
GPS error information to a Master Control site. The Master
Control site uses this information to compute in order of
importance or effect: 

1.Integrity information 
2.Ionospheric and Tropospheric delays 
3.Short-term and long term satellite clock errors 
4.Short-term satellite position error (Ephemeris) 

5.Long term satellite position error (Almanac) 

This information is relayed to two WAAS geosynchronous
Inmarsat satellites (AOR-W and POR) from the Master
Control Stations and is re-broadcast to user receivers as a
grid of corrections. From this grid, a GPS receiver
interpolates the proper Ionospheric correction based on its
position in the grid. The "extrapolation" of this information
outside the WAAS coverage is less and less precise -to the
point of INDUCING errors. Other errors are not location
dependant. 

The WAAS correction information is different than RTCM
corrections (transmitted by the Coast Guard for uses in
DGPS) because WAAS decomposes the errors into their
primary elements (Iono, clock, & ephemeris). RTCM, on
the other hand, broadcasts pseudorange corrections which
are the sum of all error sources as observed by the RTCM
reference station. This information is only valid relatively
close to the reference station. This is why spatial
decorrelation is such a large factor for RTCM, but not for
WAAS (thus the reason it is "wide area" augmentation). 

IV.  Results
The experiment is broken up into two parts. The first part is
the navigation solution which does not utilize the kalman
filter or the GPS positional corrections. The second part
will include these so the limitation of the IMU and benefits
of the kalman filter and GPS can be seen.

A.  Test Setup
The experiments were conducted using a car with the IMU
and GPS mount on it. A laptop was connected to both
sensors and recorded the data. The data was then taken and
analyzed in Matlab using the proceeding equations.

    

FIGURE 8  This is a test of the GPS accuracy. The GPS was set in a stationary location for 4 hours. The center of the
plot was taken to be the average latitude and longitude reported by the sensor. Then the corresponding distances from
the average were calculated. This GPS reciever is capable of providing the standard 10 meter accuracy 95% of the
time.
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B.  Navigational Solution Only
The first set of results was without the use of the extended
kalman filter, to see if it was really necessary. The results
of estimating the roll, pitch, and yaw without any
corrections is shown in Figure 9. The estimated angles
appear to track the true angles to an acceptable degree. The
IMU is capable of reporting it’s true roll and pitch, but not
yaw. Assuming the performance between estimating the
yaw angle and the pitch and roll angles are the same, it
should not be necessary to require a compass to update the
true yaw angle. The couple degrees of error should not
effect INS results much since the car is traveling on flat
roads.

The performance changes when we look at figure 10. The
GPS and INS (i.e. using the navigation equations and IMU
data only) differ greatly. Thus the GPS with the kalman

filter must be included into the INS to give any good
results.

C.  GPS/INS
After the inclusion of the GPS and kalman filter, the plot
shown in Figure 11 is much better. The GPS and INS lie
right on top of each other. Taking a closer look at this plot,
Figure 12 and Figure 13 show that the two do not really lie
exactly on top, but rather the INS transitions smoothly
through the GPS points. 

Looking specifically at Figure 12, it can be seen that the
IMU is picking up some of the accelerations in the turn and
shifted the position left of the GPS points. But going into
the turn and once the turn is completed, the INS and GPS
positions merge back together.

  

FIGURE 9  INS attitude solution with out extended kalman filter. The estimated roll, pitch, and yaw are shown by
the solid line, while the true roll and pitch reported by the IMU is the dashed line.

FIGURE 10  INS results without GPS and kalman filter
integrated into the system.

FIGURE 11  INS results with GPS and kalman filter
integrated in to the system.
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Figure 13 is better example showing how the INS is able to
take the discrete GPS position and the accelerations from
the IMU and fit a curve through the two. This level of
continuos positioning can not be offered by GPS alone.

Finally the distances traveled during the experiment were
calculated and the results were close as shown in Table 2.
The car’s odometer was felt to be the most accurate and the
GPS and INS distances are on either side of the value.

The extended kalman filter attempts to estimate the biases
and drifts present in the system to increase the accuracy of
the system. However there appeared to be no difference
between using the estimated biases and drifts estimated
from the filter or using constant ones. This is attributed to
the excessive amount of noise from the low cost IMU.
Chatfield’s [7] work was the prime motivator for including
these terms in the extended kalman filter, but he assumed
measurement that were much better (i.e. less noisy) than the
ones being produced by the Crossbow IMU. Thus this part
of the kalman filter could be eliminated to reduce
computational expense with no loss of performance.

V.  Conclusions
This paper has shown the effective combination of two
different sensors (GPS and IMU) each with their own
strengths and weaknesses. The “low cost” IMU used in this
work is not capable of running by itself and providing any

reasonable positioning information. GPS provides good
results, but is only capable of determining position every
second. The two sensors combined has the capability of
producing good estimates of position in between the one
second updates.
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