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The University of Florida’s autonomous submarine Subjugator is currently controlled by a series of
proportional derivative controllers. This control scheme requires much maintenance in tuning and retuning
gains whenever the smallest change to the submarine is made. This work describes a sliding mode controller
designed to replace the current control system which is robust to these small changes, thus requiring less
maintenance. Also this system will incorporate an extended Kalman filter which will estimate the submarine’s
position. The incorporation of these two new technologies give Subjugator several important capabilities that
were previously absent. Simulations of the new control system are provided to highlight the advantages.

 

I.  Introduction

 

Submarine navigation and control is a difficult and
complex topic. There are many difficulties that need to be
over come before the submarine will perform as desired.
Some of the difficulties present in submarine control are
due to disturbances and uncertainty. Internal disturbances
arise from, for example, the interaction of the compass with
the magnetic fields produced by the motors. External
disturbances are produced by currents (or the jets in a pool)
that interfere with the submarine. Complex hydrodynamic
forces that are difficult to calculate make model based
solutions to control and filter design difficult. This work is
one such attempt to over come the difficulties and achieve
control of the autonomous submarine 

 

Subjugator

 

.

 

A.  Subjugator

 

The University of Florida’s Engineering Department has an
autonomous submarine 

 

Subjugator

 

, shown in Figure 1. The
submarine is operated by a group of electrical and
mechanical engineering student who enter the submarine in
an annual competition sponsored by Autonomous
Unmanned Vehicle Society International (AUVSI) and the
Office of Naval Research (ONR).

The original control system for 

 

Subjugator

 

 was a series of
linear PID controllers (one for each desired direction of
movement). The control gains were tuned by hand through
a trial and error method. The desired states being controlled
were the motor’s speed (not the submarine’s speed), depth,
and the heading. This was due to the fact that there were no
sensors on board which could detect position or velocity.

Thus the only real system states that were capable of being
controlled were the depth and heading. 

This method resulted in a control system that performed “in
the ball park” of what was desired. However when any
noise or disturbance would interfere with the system, all
performance was lost. The designers had to “out think” the
problem by programming cleaver hacks into the control
software to handle sudden disturbances in the system to
counter act this problem. 

 

B.  Prior Work

 

Many researchers have used various tools and methods to
control submarines. Kiriazov et al [1], Dougherty and
Woolweaver[2], Lam and Ura [3], and Kreuzerand Pinto
[4] have used sliding mode for submarine control. Yuh and
Nie [5] have designed an adaptive method loosely based on
sliding mode control while Coute and Serrani [6] have used
H infinity. Guo and Huang [7] used fuzzy logic and genetic
algorithms. Appleby et al [8] compared several linear and
nonlinear techniques of submarine controller design. All of
these researchers have meet with varying degrees of
success.

 

C.  Outline

 

First an overview of submarine dynamics and disturbances
are presented. Next the development of the sliding mode
controller and extended Kalman filter are provided. Finally
the results of a Matlab simulation are presented and
discussed.
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II.  Submarine Dynamics

 

This section will cover one representation of the complex
nonlinear dynamics associated with submarines. Many
authors have looked at submarine dynamics and stability
using various methods: Nahon [9], Brucher and Rydill [10],
Popoulias et al [11], and Lenard and Marsden [12]. 

 

A.  Simple Equations of Motion

 

The following model of a submarine is a simple one. The
true differential equations of motion for a submarine are
very complex, coupled, and highly nonlinear. However few
authors uses these and prefer the simpler version since it
makes controller and filter design much easier while still
maintaining the important characteristics of submarine
behavior.

(1)

(2)

The state vector 

 

X

 

 is a composite of two vectors. The
generalized coordinates 

 

q

 

 are measured in body coordinates
and the 

 

x

 

 states are measured in world coordinates (see
Figure 2). They have the following relationship:

(3)

(4)

(5)

      and      (6)

where 

 

q

 

 is a vector of rate terms in body coordinates, 

 

x

 

 is
vector of position terms in world coordinates,  is roll, 
is pitch, and  is yaw.

 

B.  Hydrodynamics

 

The hydrodynamic forces exerted on the submarine are
given by Morrison’s Equation

(7)

where  is the density of the water,  is the dampening
coefficient, 

 

D

 

 representative length (chord or foil),  is
the hydodynamical inertia coefficient, 

 

A

 

 is the cross
sectional area, and 

 

q

 

 and  are the relative velocities and
accelerations between the submarine and the water.

 

C.  Complete Equations of Motion

 

Since it is common to assume the water is stationary, u is in
reference to the vehicle. Thus the second half of (7) can be
moved into the mass matrix and is referred to as the added
mass. The first half of the equation is the dampening
coefficients which is contained in the hydrodynamic drag
term ( ) in equation (1). The equations of motion (1) can
be rewritten so that the mass matrix now includes the
acceleration terms from (7).

(8)

where the terms after the mass (

 

m

 

) are the added mass. This
equation put into matrix form becomes:

(9)

(10)

mq̇ τ Fd–=

X q x
T=

ẋ
R123 0

0 T
q=

R123

cψcθ cψsθsφ sψcφ– sψsφ cψcφsθ+

sψcθ cψcφ sφsθsψ+ sθsψcφ cψsφ–

sθ– cθsφ cθcφ

=

T

1 sφtθ cφtθ
0 cφ sφ–

0
sφ
cθ
------ cφ

cθ
------

=

q u v w p q r
T= x x y z φ θ ψ

T=

φ θ
ψ

Fd Cd
1
2
---ρwD q q CmρwAq̇+=

ρw Cd
Cm

q̇

Fd

m CmiρwAi+( )qi
˙ Cdi

1
2
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FIGURE 1. The submarine Subjugator running underwater. FIGURE 2. A free body diagram of Subjugator.
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(11)

The  on the right side of (8) and (9) is a vector composed
of forces and torques to the system. The kinematic
relationship between these and Subjugator’s engines are

(12)

(13)

(14)

(15)

where w and L are the width and length of the submarine.
The control forces in u are the left, right, top, bottom, front,
and back motor respectively.

Problem, the C matrix values are near to impossible to
determine experimentally and impossible to analytically
calculate. These values vary with orientation, water flow
direction, and speed. Also, due to the viscosity of water, the
mass of the submarine changes with speed, and direction
due to the water molecules “sticking” to the submarine.
Since water is heavy, this “added mass” can change the
overall mass of the submarine substantially. These
problems will be dealt with through the use of sliding mode
control and possibly an extended kalman filter could
estimate the current values (although this was not done in
this work).

III.  Submarine Control and Estimation
This section will give a description of the sliding mode
controller and Kalman filter designed for Subjugator.

A.  Proportional Derivative
One of the simplest and most popular controllers
implemented is the proportional derivative (PD) controller.
The proportional gain is responsible for eliminating error in
a system, while the derivative gain adds dampening.

(16)

where the control effort is u,  is the proportional gain, 
is the derivative gain, e is the error, and  is the error rate.

There are many different methods to arrive at the desired
controller gains however these are typically model based.
Thus the performance of the controller is proportional to the
amount of error in the model. One of the largest sources of
error is the hydrodynamic terms for the submarine. These
are often impossible to calculate except for only simple
structures.

Another method for gain determination (and the one used
for Subjugator) is trial and error. However the gains are
only valid for the environment in which they were
determined and obviously nothing can be said about
stability. Thus moving the submarine from a pool, where
the gains were calculated, to an open body of water may
result in instability due to surface wave and current
interaction.

B.  Sliding Mode
Nonlinear model based control systems offer a level of
dynamic capabilities which linear techniques are incapable
of providing when dealing with parameter uncertainties and
unmodelled dynamics. Sliding mode [13], which has been
studied in the Soviet Union for many years, is categorized
as a variable structure control system which has excellent
stability, robustness, and disturbance rejection
characteristics. This type of control is not new to
submarines, in fact it is widely used due to its capability to
overcome modeling errors (due in this case to the
hydrodynamic terms and modeling as an uncoupled
system). Sliding mode has been used in: spacecraft [14],
robotics [15], missiles [16], and many other applications
where modelling error is a concern.

Sliding Mode for Subjugator
The sliding surface (s) defined by Slotine [17] is typically
given by:

(17)

where

(18)

Here q is substituted for  and x is rotated from world
coordinates to body coordinates. The new sliding surface is
now:

(19)

The sliding surface in (19) gives the controller a PD type of
action. This is used so that The is the error between the
current state and the desired state defined by

The equivalent control effort ( ), is

      (20)
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=
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where  and  are estimates of the mass and
dampening matrix. The equivalent control can be viewed as
a feed forward type of control. Here the terms deal with the
dampening forces and momentum of the system.

Now the final form of the sliding mode controller will take
the form of:

(21)

(22)

where  is a vector of  gains and  is
a positive definite scalar term.

Stability Analysis
This section has two purposes, showing stability of the
control system in the presence of modelling uncertainty and
determining the control gain K. This is accomplished by
choosing a positive definite Lyapunov based on the error
dynamics of the system, then taking its derivative to shown
that the equation is negative definite.

(23)

(24)

(25)

(26)

(27)

where the  and  are analytical estimates and 
and  are the real dynamics of the system. Now if the
estimates of the dampening and mass matrices were
perfect, the dynamics would cancel out and the equation
would only contain . Since this equation would be
negative definite, the derivation would be complete.
However this does not happen. Thus the following
substitutions are made:

   and   (28)

(29)

(30)

Here two additional substitutions are made. The first is
realizing the group of terms on the left half of the equation
represent the disturbance forces from modelling error.

Second, the typical equation for the gain K can be
substituted into the equation.

    and    (31)

(32)

(33)

Equation (33) is negative definite since  are strictly
positive constants. The sliding condition guarantees that the
surface  is reached in finite time and the system
remains on the sliding surface. The chattering implied by
the controller’s use of  can be eliminated by using a
smooth function .

C.  Extended Kalman Filter
Subjugator has the capability to measure all states except
velocity and position in the x and y direction. The velocity
measurement could be obtained through the use of low cost
flow meters (in relatively calm waters) or very expensive
velocity Doppler. The Kalman filter presented here is not a
solution by itself, but a small step forward. This
implementation would still be effected by environmental
disturbances (waves, currents, and pool jets).

For a nonlinear system were the system model and
measurement model are:

(34)

(35)

The continuos extended Kalman filter equations (which can
be found in Brown et al [18] or Lewis [19]) for the estimate
update, error covariance update and Kalman gains are:

(36)

(37)

(38)

where the jacobians are:

    and    (39)

Here the  equations are the submarine’s equations
of motion and the jacobian of  does not have to be
taken since it is already linear.
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IV.  Results
The result presented here were obtained via a simulation
conducted in Matlab. A flow chart of the simulation is
shown in Figure 3.

A.  Subjugator Physical Constants
The exact values of the physical parameters were not all
available, thus general assumptions about the system were
made. The submarine’s mass and dimensions (LxWxH)
were: 150 lbs and 53.37 x 29.1 x 27.45 in. The radius of
gyration for x, y, and z are 24.6402, 9.7861, and 23.9856 in. 

B.  Control and Estimation
The submarine was commanded to follow a simple path 4
m underwater. It was a circular path in the x-y plane with a
12 m diameter and centered on the origin. The submarine is
originally located at the origin which is located at the
surface of the water. The position and velocity of the
simulation’s first 25 seconds are shown in Figure 4 and

Figure 5. The sliding mode controller reaches the desired
path for both position and velocity after 11 seconds. The
control efforts required to achieve this are shown in Figure
6. Note that the motors are limited to their maximum output
of 107 N (24 lbf) each. Notice that the control efforts
contain no unwanted chattering which is the result of using
the smooth sat(s) function instead of the sgn(s) function.

Finally looking at the EKF error, which is the difference
between the true position and the estimated position in the
x-y plane, shown in Figure 7. This plot shows the error after
300 sec., or three complete times around the desired circle.
The initial line that starts at the origin and cuts through the
circle was caused by the transient state of the kalman gain
and error covariance matrix. Eventually both matrices settle
to steady state values which occurred when the errors began
to move around in the circular path shown.

FIGURE 3. Flow chart of the simulation, showing the system dynamics, extended Kalman filter
(EKF), and the sliding mode controller (SM).

FIGURE 4. Position of the submarine while tracking a path. FIGURE 5. Velocity of the submarine while tracking a path.
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C.  Effects of Hydrodynamic Terms
Figure 8 shows the effects of scaling the hydrodynamics up
or down on error in the system. Here the two calculations
for error are the integration of absolute error (IAE) and the
integration of time with absolute error (ITAE). The error
was positional error only. The controller was optimized by
hand to achieve the best ITAE which weights error by the
time it occurs in the simulation. Thus error that occurs
early, due to incorrect initial conditions, is weighted little
and error that occurs later, due to tracking problems, is
weighted more.

But what do the error measurements really mean as far as
performance. Looking at Figure 9, which shows a top down
look of the x-y plane, the effects of the scaling factor can be

more intuitively understood. Remember the submarine
starts off at the origin and goes to the path which lies in a
circle of diameter 12 m. 

The scaling factor of 0.6 produced a large amount of
overshoot, while the larger scaling factor of 4 took longer
to reach the desired path. The reason there was a large
amount of overshoot in the 0.6 scaling factor, was the
controller calculated too much control effort to reach the
desired state since it was over estimating what the true
hydrodynamic forces were. The results for scaling factors
between 0.6 and 4 fall in between the responses shown. The
response for scale factor of 1 is also shown for reference.

FIGURE 6. Control effort for each of the six motors which
are limited to 107 N (or 24 lbf).

FIGURE 7. Error between the real and EKF estimated
position.

FIGURE 8. The ITAE and IAE errors for various scaling factors
of the hydrodynamic forces.

FIGURE 9. Submarine’s position for various hydrodynamic
scaling factors.
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V.  Conclusions
Sliding mode control is a very powerful control scheme for
nonlinear systems with uncertainties in modelling. The
results shown here tried to highlight this by showing large
inaccuracies in the estimate of the hydrodynamic forces
still resulted in a stable controller that followed the desired
path. Although performance for the controller was best
when the hydrodynamic effort were completely known, for
either under or over estimation of the dynamics by as much
as half still produced acceptable results.
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