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This paper will discuss the design and implementation of an embedded low cost inertial navigation system (INS)
using an inertial measurement unit (IMU), digital compass, GPS, and an embedded computer system. The INS
is capable of providing continuous estimates of a vehicle’s position and orientation. Typically IMU’s are very
expensive systems, however this INS will use “low cost” components. Unfortunately with low cost also comes
low performance and is the main reason for the inclusion of GPS, compass, and Kalman filtering into the
system. Thus the IMU will use accelerometers and gyros to interpolate between the 1Hz GPS positions. All
important equations regarding navigation are presented and a discussion of the developed embedded system.
Results are presented to show the merit of the work and highlight various aspects of the INS.

 

I.  Introduction

 

Navigation has been present for thousands of years in some
form or another. The birds, the bees, and almost everything
else in nature must be able to navigate from one point in
space to another. For people, navigation had originally
included using the sun and stars. Over the years we have
been able to develop better and more accurate sensors to
compensate for our limited range of senses. This paper will
discuss work using one of these advanced sensors, an
inertial measurement unit (IMU). This sensor, coupled with
the proper mathematical background, is capable of
detecting accelerations and angular velocities and then
transforming those into the current position and orientation
of the system. 

Inertial Navigation Systems (INS) have been developed for
a wide range of vehicles. Sukkarieh [1] developed a GPS/
INS system for straddle carriers that load and unload cargo
ships in harbors. When the carriers would move from ship
to ship, they would periodically pass under obstructions
that would obscure the GPS signal. Also, as the carriers got
closer to the quay cranes, it became more difficult to get
accurate positions due to the GPS signal being reflected
about the cranes metal structure. This increases the time of
flight of the GPS signal and results in jumps in the position.
During these times the INS would then take over, and guide
the slow moving carrier until a reliable GPS signal could be
acquired.

Bennamoun et al [2] developed a GPS/INS/SONAR system
for an autonomous submarine. The SONAR added another
measurement to help with accuracy, and provided a

positional reference when the GPS antenna got submerged
and could not receive a signal.

Integration of GPS/INS is a growing trend for military
munitions (i.e. bombs, missiles, artillery shells, remotely
operated vehicles). Ohlmeyer et al [3] developed a GPS/
INS system for a new smart munitions, the EX-171. Due to
the high speed of the missile, update rates of 1 second from
a GPS only solution were too slow, and could not provide
the accuracy needed and thus needed to include the INS.
Boeing [4] has developed a GPS/INS kit that converts old
gravity bombs into precision-guided smart bombs. A
control unit is attached to the end of the warhead which
contains the GPS/INS system and battery powered motors
to control the flight of the bomb. Actual use by American
aircraft in Afghanistan during the 2002 War on Terrorism
proved these bombs can strike within 13 meters of their
intended target.

 

A.  Outline

 

The first section of this paper will introduce inertial
navigation. Then the hardware and software for the INS
will be covered. Finally experimental results using this INS
will be presented.

 

II.  Inertial Navigation

 

This section will give a brief overview of inertial
navigation. The benefits of strap-down inertial navigation,
rotations between reference frames, navigational equations,
and Kalman filtering will be covered. Further information
can be found in Walchko[5], Walchko and Mason [6],
Chatfield [7], and Rogers [8].
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A.  Overview of Inertial Navigation Systems

 

A basic flow chart of how inertial navigation works is
shown in Figure 1. However, this is not all that needs to be
done to have an INS that works. There are many problems
with noise and unbounded error that must be handled to get
any meaningful result out of the INS.

 

Strap-down INS

 

A strap-down system is a major hardware simplification of
the old gimbaled systems. The accelerometers and gyros
are mounted in body coordinates and are not mechanically
moved. Instead, a software solution is used to keep track of
the orientation of the IMU (and vehicle) and rotate the
measurements from the body frame to the navigational
frame. This method overcomes the problems encountered
with the gimbaled system, and most importantly reduces
the size, cost, power consumption, and complexity of the
system. Some of the problems associated with gimbaled
systems are listed below.

 

•

 

Bearings are not frictionless.

 

•

 

Motors are not perfect (i.e. dead zones, etc.).

 

•

 

Consumes power to keep the platform aligned with
the navigational frame which is not always good on
an embedded system.

 

•

 

Cost is high due to the need for high quality motors,
slip rings, bearings and other mechanical parts.
Thus the typical customers for such systems were
military uses on planes, ships, and intercontinental
ballistic missiles.

 

•

 

Recalibration is difficult, and requires regular
maintenance by certified personnel which could be
difficult on an autonomous vehicle. Plus any main-
tenance that must be performed on the system (i.e.
replace bearings, motors, etc.) must be done in a
clean room and then the system must go through a
lengthy recertification process.

 

B.  Reference Frames and Rotations

 

Inertial navigation uses several reference frames, which are
shown in Figures 2 and 3. To transition between the various
reference frames, several rotation matrices are needed. The
first one takes measurements in the body frame and puts
them into the navigation frame,

FIGURE 1.  1 A flow chart of a strap-down INS which takes acceleration and rotation rates from the IMU and
produces position, velocity, and attitude of the system.

 

FIGURE 2.  2 The XYZ frame is the inertial frame ECEF
and the NWU frame is the local navigational frame,
where the axes are north (N), west (W), and up (U).

FIGURE 3.  3 Body frame which is aligned with the axes
of the IMU. The center of this frame is located at the
origin of the navigational frame.
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(1)

where  is roll,  is pitch, and  is yaw. This rotation is
the sequence 1-2-3, which is typically used in aerospace
applications. This is a type 1 sequence which has
singularities when the pitch is +/- 90 degrees since at this
angle both the roll and yaw have similar effects. Thus for
fighter aircraft which typically encounter this range, other
methods must be included to account for this problem.

The next rotation will transform points from the ECEF
frame to the navigation frame,

(2)

where  is latitude and  is longitude. Now with these two
rotations we can get another rotation, the one we really
need.

(3)

The last thing to remember with the above equation is that
the inverse of any orthogonal rotation matrix is equal to its
transpose. If a rotation matrix is not orthogonal (and this a
problem with using Euler angles in navigation) then the
previous statement is invalid.

 

C.  Navigation Equations

 

Looking at Newton’s second law of motion, a change in
motion occurs as a force is applied to a body. Now, dividing
both sides of the equation by the mass of the object results
in the specific force.

(4)

In inertial navigation, accelerometers detect accelerations
due to forces exerted on the body. These forces are typically
referred to as specific forces (S). Thus reading from the
IMU will be referred to as specific forces, which are
independent of the mass. The navigation equations for the
Earth Centered Earth Fixed (ECEF) system are shown
below.

(5)

(6)

where  is the rotation rate of the earth, R is a rotation
matrix between different coordinate systems, P is the
position and V is the velocity vector in the ECEF
coordinate system as denoted by the superscript e. Also the
attitude will be changed from euler’s roll, pitch, and yaw to
quaternions. Quaternions will help prevent the body to
navigation rotation matrix, which transforms points from
body frame to the navigational frame and back, from
becoming non-orthogonal. 

(7)

 

D.  Kalman Filter

 

An Kalman filter was developed to estimate the errors of
the system and then update the navigational solution. The
error model was developed based on derivations by
Chatfield [7] and Rogers [8]. The full Kalman filter
equations will not be presented here due to limited space,
but further information can be found in Brown and Hwang
[9].

(8)

(9)

(10)

 

III.  INS Sensors

 

This section will provide an overview of the three primary
sensors: the IMU, compass, and GPS shown in Figure 5.

 

A.  Crossbow IMU

 

The IMU is a solid state vertical gyro (DMU_HDX) from
Crossbow Technologies intended for airborne applications
such as UAV control, Avionics, and Platform Stabilization.
This high reliability, strap-down inertial subsystem
provides attitude measurement with static and dynamic
accuracy comparable to traditional spinning mass vertical
gyros. Data will be transmitted by the DMU digitally via a
serial connection (RS-232). The IMU is powered by 8-30 V
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unregulated DC power source, while consuming 200 mA.
The gyros on the Crossbow IMU are low cost, low
performance MEMS (Mechanical Electrical Micro-
Systems) gyros. These gyros are much less expensive to
produce, but performed poorly. In order to compensate, the
data had to be prefiltered through a Chebyshev II IIR filter
with a pass band value of 2Hz, stop band of 3 Hz, and a stop
band attenuation of -50 dB

B.  Garmin GPS
The GPS system used in this work is the Garmin 16LVS.
The Garmin requires a 5 V DC power source. Garmin is a
common name in commercial civilian GPS systems, and
this OEM device has performance that is on par with all
other GPS systems available currently (i.e. accuracy of
about 10 m 95% of the time) as shown in Figure 8. However
this GPS was specifically bought because it included a
WAAS (Wide Area Augmentation System) filter which
should increase the accuracy to less than 3 m 95% of the
time.

WAAS [10] utilizes ground stations which detect and send
GPS error information to a Master Control site. The Master
Control site uses this information to compute in order of
importance or effect: 

1.Integrity information 
2.Ionospheric and Tropospheric delays 
3.Short-term and long term satellite clock errors 
4.Short-term satellite position error (Ephemeris) 
5.Long term satellite position error (Almanac) 

This information is relayed to two WAAS geosynchronous
Inmarsat satellites (AOR-W and POR) from the Master
Control Stations and is re-broadcast to user receivers as a
grid of corrections. From this grid, a GPS receiver
interpolates the proper Ionospheric correction based on its
position in the grid. The “extrapolation” of this information
outside the WAAS coverage is less and less precise, to the
point of INDUCING errors. Other errors are not location
dependant. 

The WAAS correction information is different than RTCM
corrections (transmitted by the Coast Guard for uses in
DGPS) because WAAS decomposes the errors into their
primary elements (Iono, clock, & ephemeris). RTCM, on
the other hand, broadcasts pseudo range corrections which
are the sum of all error sources as observed by the RTCM
reference station. This information is only valid relatively
close to the reference station. This is why spatial
decorrelation is such a large factor for RTCM, but not for
WAAS (thus the reason it is “wide area” augmentation). 

C.  Compass
The INS uses a TCM2-20 compass from Precision
Navigation. The compass uses a triaxial magnetometer to
determine heading, a fluidic inclinometer to determine roll
and pitch of the sensor, and a microprocessor for
performing various calculations on the raw data. The
compass communicates the information via an RS232
connection at 9600 baud while requiring 5 V DC at 20 mA.

IV.  Embedded Computing
This section will cover the design of the embedded system,
and discuss the improvements compared to the old system.

A.  Old System
The old configuration of the INS was centered around a 200
MHz Pentium MMX laptop running linux. The IMU and
GPS were connected to the laptop via the built in serial port
and a USB serial port. 

B.  New System
The new configuration of the INS is centered around
embedded computer running a custom linux setup stored on
a solid state, 32 MB compact flash card.

Embedded Computer
The computer is a simple embedded computer equipped
with the following: 

• AMD 133 MHz 586 processor.
• 64 MB RAM

        

FIGURE 4.  5 Sensors used in the INS. (left) The Crossbow DMU-HDX which is a solid state vertical gyro capable of
measuring angular rates and accelerations on all three axes. It also has the capability of measuring the roll and pitch of
the device too. (middle) Garmin 16LVS OEM GPS which is both a receiver and antenna. (right) Precision Navigation
TCM2-20 which is a digital compass capable of measuring direction and tilt information
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• 4 RS-232 serial ports.
• PC104 interface.
• 2 parallel ATA interfaces.
• 10 Mb ethernet.
• Dimensions: 5” x 8”.
• 5V, 4 A (average).

A pcmcia PC104 adaptor was attached to the computer so
that wireless ethernet was capable and the system was run
headless1.

Compact Flash
Since this system will be embedded, it needed a low power
and rugged storage system. A popular solution is a
notebook hard drive which is designed for mobile
applications. However, these are expensive and can crash
under vibrations caused during movement. Thus, after a
contemplating several alternatives, the decision was made
to try using a compact flash card. These are the small cards
used commonly in digital cameras and have the following
attractive benefits [11]:

• Survive 2,000 G’s (equivalent to a 10 ft. drop).
• No moving parts.
• Operates at 3.3V or 5 V and consumes less than %5

of the power of a notebook hard drive.
• 3-5 M/sec burst transfer speed.
• Completely silent operation.
• Has an ATA interface, so operating systems see it as

a simple hard drive.

Since the compact flash used in this work only contains
only 32 MB of space, a standard linux distribution cannot
be used. Instead a custom linux solution will be utilized. 

The compact flash was formatted with a linux filing system
called extension 3 or ext3. This is an extension of the
standard and reliable linux filing system ext2. The new ext3
adds journalling capabilities to the filing system which
reduces the chance of data corruption should the INS
suddenly loose power.

C.  Linux
The linux installation is not a standard desktop linux
distribution which many others tend to use. Rather, the
linux installation is a custom creation. The creation is
centered around several key components: proper kernel
configuration, init scripts, required binary programs, and
application specific programs. This is a complex topic, so
further information can be found in Walchko [12], Perns
[13-15], Wells [16], and Sissoms [17].

Kernel
There really is nothing special that has to be done to the
linux kernel to embed it into a small system. However,
there are numerous options in the kernel that lend
themselves useful to embedded systems and may not be
compiled into kernels for desktop computers. Some of them
are:

• Drivers for various types of embedded processors.
• Drivers for various types of flash media.

1. Headless means that there was no monitor or keyboard connected to the system during run time. All interaction with the system was 
through ethernet connection.

FIGURE 1. Compact flash card used to hold operating
system.

FIGURE 2. Mounted INS components: computer, IMU,
compass, and compact flash.
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• Drivers for RAM filing systems.
• Serial console support.

Init Scripts
Init scripts are programs that are written in a scripting
language (such as sh or bash) that execute various
commands when the system starts up so that a usable
computer environment is available once the scripts are
done.

Required Binaries
Unix relies on a large number of programs just to make it
useful. When creating embedded systems, this can seem to
be a rather daunting task. However, there is a project called
busybox (www.busybox.org) which combines all of the
most useful binaries (i.e. ls, grep, bash, df, ftp, telnet, etc.)
into one small executable. With the use of this binary, a
compiled kernel, and a very simple init script; it is a simple
task to create a linux system in the range of 5 MB in size.
This can then easily be embedded into almost any system.

Application Specific Binaries
Even though we are using busybox to provide all kinds of
useful programs, we will still need the INS code compiled
into a binary and put any libraries it needs into /usr/lib (e.g.
pthread, ncurses, etc.).

V.  Software Design

A.  INS Architecture
The code was written using pthreads which is an easy way
to do multi-process programming. The INS is composed of
various processes or threads that perform a specific job and
write their results to shared memory. 

• Three threads which communicated with the three
primary sensors (i.e. GPS, IMU, and compass), pre-
process the raw data, and stored the results in
shared memory for other systems.

• Navigation thread which utilized the navigational
equations and a Kalman filter to track the INS’s
states.

• Debug screen thread which utilized ncurses to dis-
play various information to the screen. This was
used when another computer was attached to the
INS through a serial connection1. 

• Network server thread which accepted connections
over the network, and reported the INS’s informa-
tion to a client program located on a remote
machine using a graphical interface.

B.  Mathematical Libraries
The previous software was written entirely in C using a
functional approach. Since INS relies heavily on
mathematical equations, this resulted in code that was
difficult to follow. Meaning that equations were not easy to
see in the resulting code, which resulted in numerous errors
and much debugging.

The new code base is written primarily in C++ using object
oriented techniques, except for a couple places where there
was nothing to be gained2 from using C++. The main areas
that benefitted from this chance were the mathematical
routines. All of the code for numerical integration, matrix
methods, vector methods, quaternion operations, and
Kalman filters is now written in C++.

1. Linux has the capability to redirect the local console from a keyboard and monitor to a serial port. This is useful when working with 
headless rack mounted servers when an administrator needs to work on a system w/o going through the network.

2. For example, the code to open a serial port or a network connection is still written in C, since there is no advantage to writing it in C++.

FIGURE 5. The three screens of the graphical client software: (from left to right) artificial horizon when the system
is roll/pitch/heading is -48/20/0, GPS status, digital map displaying UF (notice the O’Connel Center and the
football field at the top).
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C.  Graphical Client Software
Since the INS is embedded with no monitor and keyboard,
there needs to be a way to access the information. As
previously mentioned, the INS contains a server thread
which transmits various information to clients that connect
to it via TCP/IP. Note that this is not a telnet or ssh
connection.

The client software was written using a cross platform
toolkit called SDL (simple direct media layer) and can be
obtained from www.libsdl.org. This toolkit is written in C
and currently can run on: linux, Windows, BeOS, Solaris,
AIX, Mac OS 9, and OSX. The toolkit is optimized for
game development in 2D, but also has the ability to work
with OpenGL.

The graphical client is capable of displaying three screens:
artificial horizon, GPS status, digital map. The artificial
horizon is based on a standard western artificial horizon
which displays the roll, pitch, and heading of the system.
The GPS status (which is not completely functional yet)
shows GPS satellites in the area and their signal strength as
a series of green bars. Also the current latitude, longitude,
altitude, and type of information being received (i.e. 2D or
3D solution). Finally a digital map shows the location of the
system on a US Geological Services (USGS) map.

VI.  Results
The embedded INS was mounted in a Jeep Cherokee and
driven around Gainesville to observe the performance of
the system. The embedded system transmitted the results to
the graphical client located on an Apple G4 PowerBook,
where the data was recorded to the harddrive.

The route taken for the experiment is shown in Figure 1 and
the results obtained from the INS are shown in Figure 2.
Notice that the INS did a good job of reproducing the route
taken. These results are similar to the performance of the
original design of the INS. The GPS position lie on top of
the INS calculated route.

Taking a closer look at the intersection of Archer Rd. and
34th St. in Figure 1, the INS can clearly be seen to
interpolate between the GPS position updates. Remember
that the GPS positions are updated every second to an
accuracy of 10 m, 95% of the time. 

Looking closely at the figure, there are two places where
the INS seems to “dance” around. These were caused by
waiting at stoplights. The drifts and biases in the IMU
wants to make the INS position move, but the GPS signal
helps to pin the position to that location.

Again, looking closer at the turn made from Archer Rd. to
34th St., a “wiggle” in the INS position can be seen. This
was due to the vehicle moving first to the left lane, then
right, then left, and finally stopping in the right lane to wait
for the stoplight. Looking at the GPS signal (red X’s) it is
hard to see the movement of the vehicle. However the INS
(blue dots) clearly shows the movement.

VII.  Conclusions
The power of GPS to aid in navigation is great, but is
realistically limited to a 1Hz signal with an accuracy of 10
m, 95% of the time. When applications such as aircraft or
missile navigation require a faster update rate with good
precision, GPS alone can not accomplish the mission. 

FIGURE 1. Map of route taken. FIGURE 2. INS results in blue with GPS positions superimposed in red.
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The embedded INS developed here still contains the same
level of performance as the previous system. The major
difference however, is the new one utilizes a cheaper
embedded computer system for computation, solid state
compact flash which contains software, a scaled down
embedded form of linux, and network connection that link
the embedded system to another system. This was really an
attempt to make the INS more modular, lower cost, and self
sufficient. 
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